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1 Building the Mesh Topology of the Frank Model

To define the shape of Frank model at the rest pose, we manually align the body model
and other part models as shown Fig. 1 (a). The alignment is done by selecting a set of
corresponding points and computing a similarity transform matrix between parts. Then,
we manually stitched the aligned meshes in a single mesh topology by removing redundant
parts and modifying the vertices around the borders to make the final mesh as seamless as
possible. We also modified the shape of torso and feet of the final model to better match
clothed people, as shown in Fig. 1 (b). Finally, a blending C used in Eq. (4) of the paper
is computed to transform the aligned part models to the final Frank mesh shape.

2 Motion Capture with Frank Model

2.1 Feet Keypoint Detection

Example annotations for the feet landmarks can be seen in Fig. 2. At test time, for a given
person detection, we use a bounding box centered at the mean of the knee and ankle points
(defining the shins) of both legs. As the size of the bounding box, we use a square of scale
3 times the maximum difference between the point locations across all axes.

2.2 Objective Function

Seam Constraints: We encourage the vertices around the seam parts to be close by
penalizing differences between the last rings of vertices around the seam of each part, and
the corresponding closest point in the body model in the rest pose expressed as barycentric
coordinates,
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Figure 1: (a) We manually align face and hand models on the mean shape of the body
model at rest pose. (b) The mean shape of the Frank model is defined to minimize the
seams around the borders. In building the shape of Frank, we also modify the original
shape of the body model to make the model less naked (e.g., toes and shape of torsos as
pointed by arrows).

Figure 2: (Left) Definition of foot keypoints: tip of big and little toes and center of the
heel bone. (Right) Example images for foot keypoint annotations.

Eseam =
∑

(i,j)∈CLH

||BiVB − (vLH
j )T ||2+ (1)

∑
(i,j)∈CRH

||BiVB − (vRH
j )T ||2+ (2)

∑
(i,j)∈CF

||BiVB − (vF
j )T ||2, (3)

where the set CLH contains correspondences (i, j) where j indexes the last two rings of
vertices around the seam of the left hand, and i denotes the corresponding closest point
in the body model in the rest pose expressed as barycentric coordinates with Bi ∈R1×NB

(where Bi1NB =1), and similarly for the right hand. For the face, we use the last three
rings of vertices, as shown in Fig. 3.
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Figure 3: (a and b) Frank model keeps the original parameterization of part models and
it may have artifacts around the borders (in this figures we intentionally manipulate pa-
rameters to visualize the artifact). We define a seam constraint to avoid this inconsistency
among parts, which are shown in the green liens in (a) and (b). (c) and (d) show the
vertices selected to define the seam constraint. In (c) and (d), the top figures show the
hand and face part models and the bottom figures show the vertices in the body model.

Prior Cost: All PCA-derived parameters are penalized with the corresponding variance,
which by construction of our basis is normalized to 1, so that:

EF
prior = λSF ||φF ||2 + λP F ||θF ||2 (4)

EB
prior = λSB||φB||2 + λP B||θB||2 (5)

EH
prior = λSH ||φH − 1||2 + λP H ||θH ||2 (6)

where, for simplicity, we penalize pose parameters that deviate from the rest pose with
a small weight, and we encourage hand scaling factors to be close to 1, and similarly for
other part model parameters. We use different weights for the priors on different parts
(λSF = λSH = 10−2, λSB = 10−2, λP F = 10−4, λP B = 10−6, and λP H = 10−7).

2.3 Optimization Procedure

The complete model is highly nonlinear, and due to the limited degrees of freedom of the
skeletal joints, the optimization can get stuck in bad local minima. Therefore, instead of
optimizing the complete model initially, we fit the model in phases, starting with a subset
of measurements and strong priors that are relaxed as optimization progresses.

Model fitting is performed on each frame independently. To initialize the overall trans-
lation and rotation, we use four keypoints on the torso (left and right shoulders and hips)
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Figure 4: (a) Visualizing the weight W in Eq. (15). The black region means low
weight allowing more deformation and the red region means higher weight allowing litting
deformation. (b and c) Examples of out-of-shape space fitting results. For each example,
the Frank model fitting result (left), after deformation (center), and input image are shown
(right).

without using the ICP term, and with strong weight on the priors. Once the torso parts are
approximately aligned, we use all available keypoints of all body parts, with small weight
for the priors. The results at this stage already provide reasonable motion capture but
do not accurately capture the shape (i.e., silhouette) of the subject. Finally, the entire
optimization is performed including the ICP term to find correspondences with the 3D
point cloud. We run the final optimization two times, finding new correspondences each
time. For the optimization we use Levenberg-Marquardt with the Ceres Solver library [1].

3 Creating Adam

3.1 Fitting Clothes and Hair

In Eq (15), we use a diagonal weight matrix W ∈ RNU×NU to avoid large deformations
where the 3D point cloud has lower resolution than the original mesh, such as details in
the face and hands. The visualization of this weight matrix is shown in Fig. 4 (a). The
examples of deformed meshes are shown in Fig. 4 (b) and (c). We run this process for 70
subjects with 5 different poses, resulting in 350 meshes, as shown in Fig. 5.

3.2 Building Joint Regression and Shape Space

The joint regression matrix JA of Adam, with the 61 joints including hand joints and their
corresponding vertices are visualized in the left and center of Fig. 6. The mean shape of
Adam is shown on the right of Fig. 6.

4



Figure 5: An overview of the reconstructed 350 shapes by fitting the Frank model.

3.3 Optical Flow Propagation in Tracking With Adam

While fitting each frame independently has benefits—it does not suffer from error accu-
mulation and frames can be fit in parallel—it typically produces jittery motion. To reduce
this jitter, we use optical flow to propagate the initial, per-frame fit to neighboring frames
to find a smoother solution. More concretely, given the fitting results at the frame t, we
propagate this mesh to frames t−1 and t+1 using optical flow at each vertex, which is
triangulated into 3D using the method of [2]. Therefore, each vertex has at most three
candidate positions: the original mesh, and the forward and backward propagated ver-
tices (subject to a forward-backward consistency check). Given these propagated meshes,
we reoptimize the model parameters by using all propagated mesh vertices as additional
keypoints to find a compromise mesh.
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Figure 6: (Left and center) Joint locations and corresponding vertices (indicated by colors)
after optimization. (Right) Mean shape of Adam model.
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