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Abstract— Shape is one of the useful information for object
detection. The human visual system can often recognize objects
based on the 2-D outline shape alone. In this paper, we address
the challenging problem of shape matching in the presence
of complex background clutter and occlusion. To this end, we
propose a graph-based approach for shape matching. Unlike
prior methods which measure the shape similarity without
considering the relation among edge pixels, our approach uses
the connectivity of edge pixels by generating a graph. A group
of connected edge pixels, which is represented by an ”edge” of
the graph, is considered together and their similarity cost is
defined for the ”edge” weight by explicit comparison with the
corresponding template part. This approach provides the key
advantage of reducing ambiguity even in the presence of back-
ground clutter and occlusion. The optimization is performed
by means of a graph-based dynamic algorithm. The robustness
of our method is demonstrated for several examples including
long video sequences. Finally, we applied our algorithm to our
grasping robot system by providing the object information in
the form of prompt hand-drawn templates.

I. INTRODUCTION

Object detection is fundamentally important to find a
target object in an input scene. Shape information plays an
important role in object detection. The human visual system
can often recognize an object on the basis of the object’s 2-D
outline shape alone. Objects belonging to the same category
have similar shapes even if their textures or colors might
be completely different. Because of this property, shape
information has been used in computer vision area for object
detection and categorization [1], [2], [3], [4], [5]. With regard
to an interface for robotic applications, shape-based object
detection is particularly useful because the input information
could be in a simple template form such as Fig. 1(a). In this
framework, without giving the preprocessed object image by
removing the background clutter, a user can inform the robot
about the target objects by means of prompt hand-drawn
templates.

Shape-based object detection methods compare each re-
gion of the target edge map to the prior shape information
(template) of the object. In order to compare the shape sim-
ilarities of different regions, the edge pixels corresponding
to the template are selected from all the edge pixels in each
region. Subsequently, the cost is calculated by measuring
the similarity between the prior shape information and the
selected corresponding edge pixels. Finally, the area having
the least cost is treated as the target object position.

According to the form of prior shape information, two ap-
proaches for shape-based object detection can be considered
as follows. In one approach, the whole outline of an object is
used for prior information as a rigid template form [3], [4],
[5]. Because the template is a rigid form, multiple templates

are required to handle shape variance or scale change. The
mai n advantage of this approach is the simplicity of the prior
model. Only a simple template without learning is required
for detection. Our algorithm falls into this approach using
whole object outline as a rigid template. In another approach,
[1] and [2] use a group of contour fragments as prior
information and detect the object with the best combination
and arrangement of fragments. Each contour fragment has
some degree of freedom under constraints according to the
object model. This approach has an advantage in that it
can detect articulated bodies such as humans and horses
because each part can be found independently. However, this
approach requires prior learning stage to generate reasonable
contour fragments and object models.

In both the whole-outline-based approach and the contour-
fragment-based approach, the correspondences between the
contour (whole or fragment) and target edge pixels are
important to measure the shape difference. Depending on the
correspondence, the shape similarity cost can be low in the
background clutter, and it can be high even in the true object
position. Fig. 1 shows a typical example of this problem.

If we consider a pixel-by-pixel correspondence between
the template and the edge edge map, it become extremely
difficult to distinguish the true object from the background
clutter; for example the red in Fig. 1 (c). Note that the
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Fig. 1. Challenging example of shape matching (a) template (b) input image
(c) lowest cost position(a blue rectangle) using Chamfer measurement and
the edge pixels compared to template (red pixels) (d) dissimilarity cost map
for every position using Chamfer measurement (outer regions are omitted
because some parts of the template are located in the outside of the image
boundary)



shape formed by the set of these pixels looks like a shoe,
even if there is no actual shoe . This problem is caused by
the combination of unrelated small pixels. The red pixels
are actually the small parts of several vertical lines on a
bookshelf. Therefore, if this pixel set is selected for shape
comparison, the shape similarity cost might be low, and
mismatch might occur. Fig. 1 (d) shows the cost map using
Chamfer measurement( [6], [7]) representing similarity cost
at every position. The red regions are the areas with high
cost, which means that the shapes are completely different
from the template at those positions. The blue regions are the
areas with low cost, which means that the shapes in these
areas are very similar to the template. Note that the costs
in the cluttered regions are even lower than the true object
position.

In the human visual system, the edge connectivity is
a very important factor. Thus, the connected pixels, not
the unrelated small parts, can be considered together for
comparison. However, if we assume the correspondence with
the template in pixel level, it becomes difficult to consider the
related pixels together. To deal with this problem, we propose
an algorithm considering the connectivity of the edges. The
proposed algorithm prevent unrelated combination of edge
fragments. In our approach, we group edge pixels according
to their connectivity. All edge pixels in the same group are
included or excluded together when calculating the cost.
This grouping is done from bottom-up a segmentation result.
Therefore, the cost at each position is calculated by finding
a combination of edge pixel groups with the lowest cost. In
this work, we determine the optimal combination of edge
pixel groups using the graph-based approach and dynamic
programming. Our algorithm increases the gap between the
true object matching cost and the false matching cost. Our
algorithm is robust for occlusion and template variation.
The experiments for several examples including long video
sequence in section IV demonstrated the robustness of our
algorithm. We also applied our algorithm to the grasping
system explained in section II. Using the property of shape
matching, a user can inform the robot about a target object
by means of immediate hand-drawn templates.

II. SYSTEM CONFIGURATION AND MOTIVATION

This work is a part of out research on an intelligent
grasping system shown in Fig. 2. Our system consists of
a robot arm (Fig. 2 (b)) and a stereo camera (Fig. 2 (c)),
both of which are installed on a mobile robot as shown in
Fig. 2. Our robotic arm has a 6-DOF arm and a 3-DOF
gripper. To detect an object for grasping, we use the shape-
based approach for the following reasons. Firstly, objects
with similar shapes can be detected although their colors or
textures are completely different. Secondly, we can use a
hand-drawn outline to select the object for grasping. Instead
of making an image database for each object in advance, we
can choose the target object by a prompt hand-drawn outline
shape.

The detailed scenario of our grasping system is as follows.
First, the template image, which is the silhouette image of

Fig. 2. Intelligent grasping system using shape-based object detection (a)
overall system (b) 6-DOF robot arm (c) stereo camera

the desired object, is chosen. Using this template image, the
positions of the desired object in both the left and right
images from the stereo camera can be extracted; here the
proposed shape matching algorithm is used. The position
values are utilized to calculate the 3D object position in terms
of the camera coordinate through a triangulation method.
Then, the position is calculated in terms of the world
coordinate. Finally, the robot calculates the proper grasping
position by using prior knowledge about the relation between
the measured center point and the grasping point of the
object. After determining the grasping position, the robot
moves and grasps the object. In our experiment, we shows
the experimental results of our grasping system by using the
proposed shape matching algorithm.

However, our previous research [8] using oriented shape
matching algorithms [2] tends to fail if the template shape
is even slightly different from the that of object. Therefore,
in case such as our application, which uses a hand-drawn
template, the matching accuracy might be worse because the
cost of background clutter is often lower than that of the true
object position.

III. PROPOSED ALGORITHM

Given an input image, we first divide the image into small
homogeneous regions using an over-segmentation algorithm.
From the a over-segmented result, we generate an undirected
graph. Each edge of the graph represents a group of edge map
pixels (we use the term ”edge” to denote the edges of a graph,
and the term ”edge pixel” to denote the edge map pixels).
Each edge of the graph,not each edge map pixel, is the unit
for shape comparison with the template subpart. The weight
of an edge means the shape similarity cost according to its
corresponding template part, and the cost is calculated using
the average orientation difference and Euclidian distance. A
closed loop in the graph represents a region in the input
image, thus the weighted sum of the edge weights belong to
the loop means the shape similarity between the region and
the template. Finally, the most similar shape is found among
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Fig. 3. Generating a graph from an over-segmented image. (a) an over-segmented image (b) an edge map extracted from the over-segmented image (c)
extracted nodes (red rectangles) (d) final graph (the edges passing the image boundary are omitted).

all possible closed loops in the graph using the dynamic
programming technique based on a shortest path algorithm.
In this section, we explain the proposed graph-based shape
matching algorithm in detail.

A. Graph Generation from an Over-segmented Image

In this section we explain how to generate a undirected
graph G(E, V ) from an over-segmented result. In section III-
D, we will transform G(E, V ) into a directed graph by taking
the direction of each edge according to its correspondence
to the template.

For the first step. we divide an input image into small
segments by using an over-segmentation algorithm. Because
the over-segmentation algorithm merges homogeneous re-
gion into one segment, we can assume that there is a discon-
tinuity at the boundary between two segments. Therefore, we
generate an edge map by extracting the pixels at the boundary
between two segments. Fig.3(a) shows an over-segmented
result generated from Fig.1(b), and Fig.3(b) is an edge map
extracted from Fig.3(a).

An undirected graph G generated from the over-
segmentation result is composed of a node set V and an
undirected edge set E. We define the nodes in V as the points
at which three or more segments meet. These points are the
same as the junction points in the edge map. The extracted
nodes are shown in Fig.3 (c). The edges in E are defined
between two connected nodes. Conceptually, the edge Epq

which connects two adjacent nodes Vp and Vq represents the
group of edge pixels that connect the two nodes in the edge
map. Further, each group of edge pixel belong to each edge
is the smallest unit for shape comparison. Fig.3 (d) shows
the final graph with each edge drawn different color.

This graph definition has a meaningful property. In an
over-segmented image, we can find the object by piecing
together the segments. In the view of a graph, we can
consider the same object region by finding a closed loop
in the generated graph. Therefore, the problem of finding an
object by piecing together the segments is equivalent to the
problem of finding the closed loop in the graph.

The weight of a closed loop in the graph is an approx-
imation of the similarity cost between the template and all
edge map pixels belong to the edges composing the loop.
Because we grouped connected edge pixels into an edge in
E, this approach can prevent the use of unrelated combination
of small fragments for the similarity cost calculation. In the
proposed approach, only those edge pixels considered as a

part of the object outline are used for the similarity cost
calculation.

B. Edge Weight using the Average of the Euclidean Distance
and the Orientation Difference

The weight of each edge is calculated by comparing the
similarity to the corresponding subpart of the template T.
Because the correspondence is changed according to the
template position, the cost of each edge is also changed
according to the template position. We refer to the template
translated by τ as τ(T ) (The translation τ can also be
a transformation if we want to cover the rotation or the
skew of the the object shape). For each positioned template
τ(T ), the weight of each edge is calculated and the optimal
similarity cost, which is the lowest cost, is calculated using
the optimization algorithm explained in III-D. The final
object position is the lowest cost position.

To calculate each edge weight, we determine the template
subpart that corresponds to the edge by using its two end
nodes. For an edge Epq ∈ E and its end nodes Vp and
Vq, we find the nearest template points τ(Tp) and τ(Tq).
We assume that Epq corresponds to the template subpart
between τ(Tp) and τ(Tq), τ(Tpq). The weight of edge Epq

is determined using the average Euclidean distance and the
orientation difference as follows.

WEpq
= max

(
d(Epq, τ(Tpq)), d(τ(Tpq), Epq)

)
(1)

where,

d(X, Y ) =
1

NX

∑
xi∈X

‖ xi − yxi ‖ +λ|o(xi)− o(yxi)|. (2)

Equation 2 is oriented Chamfer measurement [2]. The xi

and y are the pixel elements of X,Y and yxi is the nearest
pixel in Y from xi. ‖ · ‖ is the Euclidian distance. And, o(·)
is orientation of the tangent line; therefore, the seconde term
of (2) means the orientation difference between an element
of X and its nearest point in Y. λ is the constant weight for
the orientation difference, and Nx is the number of pixels in
X. Conceptually, the cost d(·) means the average Euclidean
distance and orientation difference between each pixel of X
and its nearest pixel of Y. Note that d(·) is not a commutative
function, that is, d(X, Y ) 6= d(Y, X). d(X, Y ) is the cost
calculated by finding the nearest edge pixel from X to Y,
while d(Y,X) is the cost calculated in the opposite way. We



Fig. 4. Calculation for d(A,B). The dotted arrows indicate the nearest
pixels from A to B. The part of B inside the dotted region might be omitted
when calculating d(A,B). To avoid this problem, we use maximum between
d(A,B), d(B,A)

define edge weight as the maximum value, as given in (1).
Fig. 4 shows why our weight is reasonable.

In the calculation of d(A,B), nearest points of all A pixels
can be found in the part on B outside of the dotted circle. So,
the shape difference inside the dotted region is omitted for
the calculation of d(A,B). Thus, d(A,B) could be low even
if the shapes of two edges look totally different. However,
d(B,A) is still high because the cost from the points inside
the dotted circle is still used for average cost calculation.
Therefore, because we take their maxima value, we can be
consider both way and we can sure that two edges are similar
when WEpq

is low.

C. Similarity Cost for the Closed Loop

Since the edge weight is defined as the average cost, we
have to use a weighted summation to obtain the cost of
connected edges. We define the new weighted summation⊕

as follows.

WEa−b
= WEa

⊕
WEb

=
l(τ(Ta))

l(τ(Ta)) + l(τ(Tb))
·WEa

+
l(τ(Tb))

l(τ(Ta)) + l(τ(Tb))
·WEb

(3)

where Ea−b denote the connected edge of Ea,and Eb. Ta,
Tb are the corresponding template subparts of each Ea, Eb.
l(·) is the length of the template subpart. The corresponding
template subpart of Ea−b is exactly same as the connection
of Ta and Tb because we defined the correspondence using
two end nodes of edges. Therefore,

l(Ta−b) = l(Ta) + l(Tb). (4)

The new definition for weighted summation is the key using
the dynamic programming technique for optimization.

Finally, the similarity cost of a closed loop L ⊂ E is
defined using the new summation as follows.⊕

e∈L

We = ((We1

⊕
We2)

⊕
We2) . . . . (5)

And the most similar loop L∗ is defined as

L∗ = arg min
L

⊕
e∈L

We. (6)

D. Optimization to find optimal loop L∗

We design the optimization algorithm to find L∗ based on
dynamic programming. Our optimization algorithm is per-
formed by the iterative shortest path algorithm [9]. Our new
summation (3) satisfies the optimal substructure property of
the shortest path algorithms. The sub-paths of a shortest path
are also the shortest paths because the weight for summation
of that sub-path is statically determined by the two end nodes
of the sub-paths. Therefore, we can use the optimal weight of
a sub-path for calculating the cost of extended paths passing
through this sub-path.

To use the shortest path algorithm, we generate a directed
graph from an undirected graph G(E, V ) by taking the
direction for each edge. First, we give a direction for the
template, for example, clockwise. The direction of the edge
is determined according to the direction of the corresponding
template part. For example, if Ta − Tb is the corresponding
template part of Ea − Eb and the direction of template is
from Ta to Tb, then the direction of Ea − Eb is also from
Ea to Ea. However, if Ta and Tb are too close, that is,
smaller than a threshold, then we take both directions to
avoid an unexpected break int the closed path. Fig. 5 shows
an example of how to give an edge direction. In this example,
we give both directions, indicated by orange arrows, because
this edge is too short to give a direction.

The shortest cycle passing through an edge Epq which
connects Vp to Vq can be found using a shortest path
algorithm. In this case, we find the shortest path from
Vq to Vp after erasing edge Epq. Then, we can find the
shortest cycle by adding Epq to the end of the path. When
we use a shortest path algorithm, we use

⊕
instead of

conventional summation. Finally, our optimization algorithm
can be performed by iteratively finding the shortest cycle for
each edge as Algorithm 1.

As mentioned above, L∗ is changed according to the trans-
lation τ because we define the edge weight using τ(Tpq).
Therefore, the final object detection is done by comparing L∗

of each τ . To reduce the calculation time spent on finding L∗

Fig. 5. Taking the edge direction for directed graph. The red line is a
template and the blue one is a graph. Given the direction of template,
we determine the direction of each edge according to the corresponding
template direction. Notice the orange arrows that we take both direction.



Algorithm 1 Optimization Algorithm to Find L∗

for each edge Euv do
w = WEuv (Save the current edge weight)
WEuv = ∞ (Erase the current edge)
tempCost = the cost of shortest path from v to u (using
Bellman-Ford shortest path algorithm with

⊕
)

if tempCost
⊕

w < shortestCost then
WL∗ = tempCost

⊕
w

L∗ = (shortest path from v to u) ∪ Euv

end if
WEuv

= w (Recover the current edge)
end for

for each τ , the graph is generated using the segments around
τ(T ) instead of using the full segments in our experiments.

IV. EXPERIMENTAL RESULT

We have tested our algorithm on several examples in-
cluding long video sequences. The input images have
a resolution of 320x240 pixels. In all of our ex-
periments, the initial over-segmentation was computed
using publicly available code for Multiscale Normal-
ized Cuts [10]. (available at http://www.seas.upenn.edu/∼
timothee/software/ncut multiscale/ncut multiscale.html).

Fig. 6 shows the similarity cost map generated by the pro-
posed algorithm for the example shown in Fig. 1. Compared
with Fig. 1 (c), this result demonstrates that our algorithm
is more discriminative than the previous method. Because
the cost gap between the object and background clutter is
relatively high, and our algorithm tolerates shape variation
caused by occlusions or scale changes.

We also tested our algorithm for the long video sequences.
In this video, the target object- a shoe - is located in the
complex cluttered background and often occluded by the
other object. Our video includes 350 image frames, and a
shoe is occluded in 205 images. To demonstrate the tolerance
for shape variation, we tested with different size of the
templates which resizing ratios are from 0.8 to 1.2. Although
we did not consider rotation in this experiment, it can be
covered by rotating the template in every position for some
angles. To find the optimal matching position, we translated
the template for each grid point with a 20-pixel interval.

Fig. 6. A cost map generated by the proposed algorithm for the example in
Fig. 1(b). We gave hight cost(dark red area) for the position which doesn’t
have any possible loop.

Fig. 7. Comparison of accuracy of the proposed algorithm and accuracy
of the oriented chamfer matching according to the scale variation of the
template

The result of our algorithm is shown in Fig. 8 (c) and (e).
The blue lines are the optimal template positions, which
have the lowest cost. At this template position, the graph
is generated from the white regions. And the yellow regions
are the regions contained by the optimal closed loops which
has lowest cost. To evaluate the accuracy, we counted the
correctly detected objects among all the frames. We evaluated
that the detection is correct if the detected regions overlap
over more than half of the true object region. Fig. 7 shows the
graph comparing the result between the proposed algorithm
and the oriented Chamfer matching. In the graph, the x-
axis represents the scale variance of the template and y-
axis represents the accuracy. The result demonstrates that
our algorithm is more robust against scale variances of the
shape.

We also tested our algorithm using a hand-drawn template.
Fig. 9 shows the results using a same template. While ori-
ented Chamfer matching failed to detect the objects because
of shape difference between the hand-drawn template and
the objects, our algorithm successfully detected the objects.

Finally, we applied the proposed algorithm to our grasping
system. Fig. 10 shows the detection results at both the left
and right images from the stereo camera. The red dots inside
the yellow regions indicate the calculated center of mass.
From these center positions, the object position in terms
of the world coordinate was calculated using triangulation
method with the camera calibration result. Some images of
our grasping system demonstration video using the shape
matching result of Fig. 10 are shown in the Fig. 11.

V. CONCLUSION AND FUTURE WORKS

We have presented a new approach for shape-based object
detection. Unlike the previous methods, our approach uses
the connectivity of edge pixels by generating a graph. The
related edge pixels, which belong to an edge, are considered
together and their similarity cost is defined by means of an
explicit comparison with the corresponding template part.
Conceptually, our approach is equivalent to finding the
optimal combination of the segments that form the object
using shape-based measurement. We solved this problem



(a) (b) (c) (d) (e)

Fig. 8. Experimental result according to occlusions and template scale variation. (a) Input images (b) oriented Chamfer matching (template scale ratio is
0.9) (c) proposed algorithm (template scale ratio is 0.9) (d) oriented Chamfer matching (template scale ratio is 1.1) (e) proposed algorithm (template scale
ratio is 1.1).

(a) (b) (c) (d)

Fig. 9. Experimental result for several objects with same template (a) input image (b) oriented Chamfer matching (c) over-segmentation result (d) proposed
algorithm

using a graph-based approach. This approach provides the
key advantage of reducing ambiguity even in the presence
of complex background clutter and occlusions, which is
hard to solve in pixel level. The optimization is performed
by a graph-based dynamic algorithm based on our new
weighted summation. Our approach yields better results for
the complex and occluded scenes. In our experiments, we

demonstrated the robustness of our algorithm by testing with
the several examples.

In this work, we only concentrated on the single-template-
based approach. However, this work can be expanded
to multiple-template-based approach to cover variations in
shape.



(a) (b) (c) (d)

Fig. 10. Shape matching result for stereo camera images of our robot grasping system. (a,b) the input image of the left camera and the result. (c,b) the
input image of the right camera and the result.

(a) (b) (c) (d) (e)

Fig. 11. The Robot grasping system using proposed shape matching
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