MAP Visibility Estimation for Large-Scale Dynamic 3D Reconstruction

Hanbyul Joo Hyun Soo Park Yaser Sheikh

Carnegie Mellon University

Large-scale 3D Reconstruction Utilizing a Large Number of Images

Dense

Accurate

Covering large area

[Snavely et al., SIGGRAPH 2006] [Agarwal et al., ICCV 2009]

Large-scale 3D <u>Event</u> Reconstruction New Opportunity from a Large Number of Videos

What can we reconstruct in dynamic scenes?

Large-scale Dynamic Event Reconstruction

What to reconstruct

Static Scene

3D Point cloud (3D shape)

Dense Accurate Covering Large area **Dynamic Scene**

<u>Trajectory stream</u> (3D shape + **3D motion**)

CMU Panoptic Studio A System to Simulate Crowd Capture Videos

Geodesic Dome Exterior

Spherical Image (Interior)

Looking in

Input for Dynamic Event Reconstruction An Example View

Input for Dynamic Event Reconstruction 480 Unique Viewpoints

Input for Dynamic Event Reconstruction All 480 Input Videos

Large-scale Dynamic 3D Reconstruction 100,000 Trajectories over Hundreds of Frames

No spatial or temporal regularization is used

Large-scale Dynamic 3D Reconstruction A Detailed View of Selected Patches

Reconstructing 3D Trajectory 2D Flow-based Method

Time t Time t+1

Temporal correspondence problem **within** each camera view is much easier than correspondence problem **across** views

Reconstructing 3D Trajectory Key Issue To Leverage a Large Number of Views

Time-varying visibility problem

Which cameras are observing which points at each time?

Static Scene

Point cloud reconstruction

Static Scene

Point cloud reconstruction

Static Scene

Point cloud reconstruction

Error in visibility reasoning

Static Scene

Point cloud reconstruction

Dynamic Scene

Trajectory stream reconstruction

Static Scene

Point cloud reconstruction

Dynamic Scene

Trajectory stream reconstruction

Static Scene

Point cloud reconstruction

Dynamic Scene

Trajectory stream reconstruction

Static Scene

Point cloud reconstruction

Dynamic Scene

Trajectory stream reconstruction

Failure in 3D tracking

Static Scene

Point cloud reconstruction

Dynamic Scene

Trajectory stream reconstruction

Failure in 3D tracking

As large and accurate visibility set as possible

Photometric Consistency A Common Cue for Static Scene Reconstruction

Accurate 3D patch shape and its texture are required

Photometric Consistency A Common Cue for Static Scene Reconstruction

Motion Consistency A Novel Cue in Dynamic Scene

Motion Consistency A Novel Cue in Dynamic Scene

MAP Visibility Estimate Visibility Likelihood and Visibility Prior

Result

Trajectory Stream Reconstruction Result The Circular Motion Sequence

Time-varying Visibility Reasoning Our Result

Dynamic 3D Reconstruction Result Quantitative Comparison

Trajectory Stream Reconstruction Result The Volleyball Sequence

Trajectory Stream Reconstruction Result The Volleyball Sequence: a Detail View

Trajectory Stream Reconstruction Result The Falling Boxes Sequence

Trajectory Stream Reconstruction Result The Confetti Sequence

Trajectory Stream Reconstruction Result The Fluid Motion Sequence

Future Work

Moving cameras

Motion analysis

Social interactions

Thank you Please visit our poster (O-2A-5)

Dataset will be available at our project website: http://www.cs.cmu.edu/~hanbyulj/14/visibility.html

Backup Slides

Algorithm Overview Patch Tracking and Visibility Estimation

Detailed Views of Visibility Reasoning Result

Visibility Reasoning Result Quantitative Comparison

Dynamic 3D Reconstruction Result Quantitative Comparison

Summary of the Datasets

Sequence	Frames	Duration	# of points	Av. traj. length
Circ. Movement	250	10.0 sec	10433	404.9 cm
Volleyball	210	8.4 sec	8422	326.4 cm
Bat Swing	200	8.0 sec	3849	224.1 cm
Falling Boxes	160	6.4 sec	17934	164.7 cm
Confetti	200	8.0 sec	10345	103.0 cm
Fluid Motion	200	8.0 sec	3153	123.1 cm

Trajectory reconstruction from one time instance

Frame rate: 25frame / sec Data size: 220GB / min

Computation Time

- 10,000 points over 8 sec
- Using 100 cores
- 12 hours
- 10~15 starting frames for each sequence 1 week

Quantitative Evaluation Method

A Detailed View of A Selected Patch

A Detailed View of Selected Patches

A Detailed View of A Selected Patch

A Detailed View of Selected Patches

References

F. Huguet and F. Devernay. A variational method for scene flow estimation from stereo sequences. In ICCV, 2007.

T. Basha, Y. Moses, and N. Kiryati. Multi-view Scene Flow Estimation: A View Centered Variational Approach. IJCV, 2012.

Y. Furukawa and J. Ponce. Dense 3D motion capture from synchronized video streams. In CVPR, 2008

N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Exploring photo collections in 3D. TOG, 2006.

S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski Building Rome in a Day, ICCV, 2009

S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade. Three-dimensional scene flow. TPAMI, 2005.

R. Carceroni and K. Kutalakos. Multi-view scene capture by surfel sampling: From video streams to non-rigid 3D motion, shape and reflectance. IJCV, 2002.

F. Devernay, D. Mateus, and M. Guilbert. Multi-CameraSceneFlow by Tracking 3-D Points and Surfels. In CVPR, 2006

L. Guan, J. S. Franco, E. Boyer, M. Pollefeys. Probabilistic 3D occupancy flow with latent silhouette cues. In CVPR 2010.

T. Tung and T. Matsuyama. Dynamic surface matching by geodesic mapping for 3D animation transfer. In CVPR, 2010

K. Varanasi, A. Zaharescu, E. Boyer, R. Horaud, Temporal surface tracking using mesh evolution. In ECCV, 2008.

E. de Aguiar, C. Theobalt, C. Stoll, and H.-P. Seidel. Marker-less deformable mesh tracking for human shape and motion capture. In CVPR, 2007